论文标题

阻尼波方程的多项式稳定性的鲁棒性

Robustness of polynomial stability of damped wave equations

论文作者

Baidiuk, D., Paunonen, L.

论文摘要

在本文中,我们介绍了有关在添加扰动项下阻尼波方程的多项式稳定性的新结果。我们特别在矩形域,一维弱阻尼的韦伯斯特方程以及具有声学边界条件的波方程中尤其引入了足够的条件,以使矩形域上的二维波方程的稳定性。在韦伯斯特方程式的情况下,我们使用结果来计算确保扰动方程的多项式稳定性的显式数值界限。

In this paper we present new results on the preservation of polynomial stability of damped wave equations under addition of perturbing terms. We in particular introduce sufficient conditions for the stability of perturbed two-dimensional wave equations on rectangular domains, a one-dimensional weakly damped Webster's equation, and a wave equation with an acoustic boundary condition. In the case of Webster's equation, we use our results to compute explicit numerical bounds that guarantee the polynomial stability of the perturbed equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源