论文标题
量子关键点附近的纠缠振荡
Entanglement Oscillations near a Quantum Critical Point
论文作者
论文摘要
我们在存在纵向和横向场的情况下研究Ising自旋链的缩放限制的纠缠动力学。我们介绍了关键横向场中纵向场淬火的分析结果,该结果超出了当前的晶格集成性技术。我们针对相应的晶格模型的数值模拟测试了这些结果,发现了非常好的一致性。我们表明,在田间理论的光谱中,结合状态的存在导致纠缠熵的振荡,并抑制其在数值模拟可访问的时间尺度上的线性生长。对于小淬灭,我们准确地确定了这些振荡贡献,并证明它们的存在来自对称性论点。对于零纵向场的横向场淬灭,我们证明rényi熵与时间相关函数的指数的对数完全成比例,其领先的大时间行为是线性的,因此纠缠的增长是线性的。我们得出的结论是,在缩放极限下,纠缠熵的线性生长和振荡不能简单地看作是可集成性及其破裂的后果。
We study the dynamics of entanglement in the scaling limit of the Ising spin chain in the presence of both a longitudinal and a transverse field. We present analytical results for the quench of the longitudinal field in critical transverse field which go beyond current lattice integrability techniques. We test these results against a numerical simulation on the corresponding lattice model finding extremely good agreement. We show that the presence of bound states in the spectrum of the field theory leads to oscillations in the entanglement entropy and suppresses its linear growth on the time scales accessible to numerical simulations. For small quenches we determine exactly these oscillatory contributions and demonstrate that their presence follows from symmetry arguments. For the quench of the transverse field at zero longitudinal field we prove that the Rényi entropies are exactly proportional to the logarithm of the exponential of a time-dependent function, whose leading large-time behaviour is linear, hence entanglement grows linearly. We conclude that, in the scaling limit, linear growth and oscillations in the entanglement entropies can not be simply seen as consequences of integrability and its breaking respectively.