论文标题

多目标直接策略搜索使用MultiReServoir系统中的基于物理的操作规则

Multiobjective Direct Policy Search Using Physically Based Operating Rules in Multireservoir Systems

论文作者

Ritter, Josias, Corzo, Gerald, Solomatine, Dimitri P., Angarita, H.

论文摘要

这项研究探讨了将物理解释性引入具有多个目标的多层服务系统的操作规则的过程。先前的研究应用了直接策略搜索(DPS)的概念,其中发布策略表示为一组参数化功能(例如,神经网络),通过模拟测试期内不同参数值组合的性能进行了优化。这种方法的问题在于,操作员通常避免采用这种人工黑框功能来直接对其系统进行实时控制,而更喜欢与系统物理学有明确连接的更简单工具。本研究通过用基于物理的参数操作规则替换DPS中的黑框函数来解决此不匹配,例如,通过直接将大坝中的目标水平作为决策变量。这导致了物理上可以解释的结果,并且可能对操作员更容易接受。这项工作中提出的方法适用于哥伦比亚NECHI集水区的五个水库和四个发电厂的网络,其中涉及四个兴趣:平均能源产生,公司能源产生,洪水危害和流动状态改变。发布策略仅取决于仅12个参数,这与多目标DPS的现有方法相比大大降低了计算复杂性。由此产生的四维帕累托(Pareto-Approximate)套装提供了各种操作策略,从中可以选择最适合其偏好的操作策略。出于演示目的,选择了一个特定的优化策略,并分析其参数值,以说明如何由操作员直接解释基于物理的操作规则。

This study explores the ways to introduce physical interpretability into the process of optimizing operating rules for multireservoir systems with multiple objectives. Prior studies applied the concept of direct policy search (DPS), in which the release policy is expressed as a set of parameterized functions (e.g., neural networks) that are optimized by simulating the performance of different parameter value combinations over a testing period. The problem with this approach is that the operators generally avoid adopting such artificial black-box functions for the direct real-time control of their systems, preferring simpler tools with a clear connection to the system physics. This study addresses this mismatch by replacing the black-box functions in DPS with physically based parameterized operating rules, for example by directly using target levels in dams as decision variables. This leads to results that are physically interpretable and may be more acceptable to operators. The methodology proposed in this work is applied to a network of five reservoirs and four power plants in the Nechi catchment in Colombia, with four interests involved: average energy generation, firm energy generation, flood hazard, and flow regime alteration. The release policy is expressed depending on only 12 parameters, which significantly reduces the computational complexity compared to existing approaches of multiobjective DPS. The resulting four-dimensional Pareto-approximate set offers a variety of operational strategies from which operators may choose one that corresponds best to their preferences. For demonstration purposes, one particular optimized policy is selected and its parameter values are analyzed to illustrate how the physically based operating rules can be directly interpreted by the operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源