论文标题

自适应正则化完全波形反演

Full Waveform Inversion with Adaptive Regularization

论文作者

Aghamiry, Hossein S., Gholami, Ali, Operto, Stéphane

论文摘要

正规化对于解决不同地球科学领域中产生的非线性不良反问题是必要的。适当的正则化的基础是正常化程序表达的先验,该正规剂可能是非自适应或适应性的(数据驱动)。在本文中,我们提出了一般的黑盒正则算法,用于解决非线性反问题,例如全波形反转(FWI),该算法接受经验先验,这些先验是通过精致的DeNo算法自适应确定的。非线性逆问题通过近端牛顿方法解决,该方法以这种方式概括了传统的牛顿步骤,以涉及通过操作员分开和近端映射的(可能是非差异)正则化功能的梯度/亚级别。此外,它需要考虑正规化最小二乘优化问题中的Hessian矩阵。我们为此任务提出了两种不同的分裂算法。首先,我们根据一阶广义迭代式收缩阈值算法(ISTA)和因此牛顿 - 伊斯塔(NISTA)来计算牛顿搜索方向。迭代仅需要Hessian-vector产物来计算非线性目标函数二次近似的梯度步骤。第二个依赖于乘数的交替方向方法(ADMM),因此依赖于牛顿 - admm(NADMM),其中,复合材料中最小二乘优化的子问题和正则化值通过辅助变量解耦,并以交替的模式求解。我们通过用BM3D正常化求解全波倒置来比较NISTA和NADMM。测试显示两种算法获得的有希望的结果。但是,当使用L-BFGS解决牛顿系统时,NADMM的收敛速率比牛顿-ISTA更快。

Regularization is necessary for solving nonlinear ill-posed inverse problems arising in different fields of geosciences. The base of a suitable regularization is the prior expressed by the regularizer, which can be non-adaptive or adaptive (data-driven). In this paper, we propose general black-box regularization algorithms for solving nonlinear inverse problems such as full-waveform inversion (FWI), which admit empirical priors that are determined adaptively by sophisticated denoising algorithms. The nonlinear inverse problem is solved by a proximal Newton method, which generalizes the traditional Newton step in such a way to involve the gradients/subgradients of a (possibly non-differentiable) regularization function through operator splitting and proximal mappings. Furthermore, it requires to account for the Hessian matrix in the regularized least-squares optimization problem. We propose two different splitting algorithms for this task. In the first, we compute the Newton search direction with an iterative method based upon the first-order generalized iterative shrinkage-thresholding algorithm (ISTA), and hence Newton-ISTA (NISTA). The iterations require only Hessian-vector products to compute the gradient step of the quadratic approximation of the nonlinear objective function. The second relies on the alternating direction method of multipliers (ADMM), and hence Newton-ADMM (NADMM), where the least-square optimization subproblem and the regularization subproblem in the composite are decoupled through auxiliary variable and solved in an alternating mode. We compare NISTA and NADMM numerically by solving full-waveform inversion with BM3D regularizations. The tests show promising results obtained by both algorithms. However, NADMM shows a faster convergence rate than Newton-ISTA when using L-BFGS to solve the Newton system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源