论文标题
在多元时间表上使用卷积神经网络的股票价格预测
Stock Price Prediction Using Convolutional Neural Networks on a Multivariate Timeseries
论文作者
论文摘要
股票价格未来转移的预测一直是许多研究工作的主题。在这项工作中,我们提出了一种使用机器学习和基于深度学习的方法进行股票价格预测的混合方法。从2015年1月到2019年12月,我们选择了四年来,我们选择了印度国家证券交易所的Nifty 50指数值。根据上述期间的漂亮数据,我们使用机器学习方法构建了各种预测模型,然后使用这些模型来预测2019年的Nifty 50的近距离价值,并提供一周的预测视野。为了预测漂亮的索引运动模式,我们使用多种分类方法,而为了预测Nifty索引的实际关闭值,构建了各种回归模型。然后,我们通过使用具有步行前进验证的卷积神经网络构建基于深度学习的回归模型来增强模型的预测能力。 CNN模型对其参数进行了微调,因此验证损失随迭代次数的增加而稳定,训练和验证精度会融合。我们利用三种方法利用CNN在预测未来的Nifty索引值中的功率,这些方法在预测中使用的变量数量有所不同,整体模型中使用的子模型数量以及用于培训模型的输入数据的大小。所有分类和回归模型的各种指标都呈现了广泛的结果。结果清楚地表明,基于CNN的多元预测模型是预测Nifty指数值以每周的预测范围的运动的最有效和准确的。
Prediction of future movement of stock prices has been a subject matter of many research work. In this work, we propose a hybrid approach for stock price prediction using machine learning and deep learning-based methods. We select the NIFTY 50 index values of the National Stock Exchange of India, over a period of four years, from January 2015 till December 2019. Based on the NIFTY data during the said period, we build various predictive models using machine learning approaches, and then use those models to predict the Close value of NIFTY 50 for the year 2019, with a forecast horizon of one week. For predicting the NIFTY index movement patterns, we use a number of classification methods, while for forecasting the actual Close values of NIFTY index, various regression models are built. We, then, augment our predictive power of the models by building a deep learning-based regression model using Convolutional Neural Network with a walk-forward validation. The CNN model is fine-tuned for its parameters so that the validation loss stabilizes with increasing number of iterations, and the training and validation accuracies converge. We exploit the power of CNN in forecasting the future NIFTY index values using three approaches which differ in number of variables used in forecasting, number of sub-models used in the overall models and, size of the input data for training the models. Extensive results are presented on various metrics for all classification and regression models. The results clearly indicate that CNN-based multivariate forecasting model is the most effective and accurate in predicting the movement of NIFTY index values with a weekly forecast horizon.