论文标题

使用强化学习计算有限状态渠道的反馈能力

Computing the Feedback Capacity of Finite State Channels using Reinforcement Learning

论文作者

Aharoni, Ziv, Sabag, Oron, Permuter, Haim Henry

论文摘要

在本文中,我们提出了一种新颖的方法,以使用增强学习(RL)来计算记忆的通道反馈能力。在RL中,人们试图最大化在连续决策环境中收集的累积奖励。这是通过收集基本环境的样本并使用它们来学习最佳决策规则来完成的。这种方法的主要优点是它的计算效率,即使在高维问题中也是如此。因此,RL可用于以数值为单位尺寸的Unifilar有限状态通道(FSC)的反馈能力。 RL算法的结果阐明了最佳决策规则的特性,在我们的情况下,这是通道的最佳输入分布。这些见解可以通过求解相应的上限和上限来转换为分析性的单个字母能力表达式。我们通过分析用三元字母来分析求解众所周知的Ising通道的反馈能力来证明该方法的效率。我们还提供了一个简单的编码方案,可实现反馈能力。

In this paper, we propose a novel method to compute the feedback capacity of channels with memory using reinforcement learning (RL). In RL, one seeks to maximize cumulative rewards collected in a sequential decision-making environment. This is done by collecting samples of the underlying environment and using them to learn the optimal decision rule. The main advantage of this approach is its computational efficiency, even in high dimensional problems. Hence, RL can be used to estimate numerically the feedback capacity of unifilar finite state channels (FSCs) with large alphabet size. The outcome of the RL algorithm sheds light on the properties of the optimal decision rule, which in our case, is the optimal input distribution of the channel. These insights can be converted into analytic, single-letter capacity expressions by solving corresponding lower and upper bounds. We demonstrate the efficiency of this method by analytically solving the feedback capacity of the well-known Ising channel with a ternary alphabet. We also provide a simple coding scheme that achieves the feedback capacity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源