论文标题
用于遥感场景分类的卷积神经网络体系结构学习
Convolution Neural Network Architecture Learning for Remote Sensing Scene Classification
论文作者
论文摘要
遥感图像场景分类是理解遥感图像的基本但挑战性的任务。最近,基于深度学习的方法,尤其是基于卷积神经网络(基于CNN)的方法显示出巨大的潜力来理解遥感图像。基于CNN的方法通过利用从数据中学到的功能而不是手动设计的功能来达到成功。 CNN的特征学习过程在很大程度上取决于CNN的体系结构。但是,用于遥感场景分类的CNN的大多数体系结构仍然是手工设计的,它需要大量的建筑工程技能和领域知识,并且可能不会在特殊数据集中发挥CNN的最大潜力。在本文中,我们为遥感场景分类提出了一个自动架构学习过程。我们设计了一个参数空间,其中每组参数代表CNN的某个体系结构(即,某些参数代表体系结构中使用的运算符类型,例如卷积,汇总,无连接或身份,而其他参数表示这些运营商的连接方式)。为了发现给定数据集的最佳参数集,我们引入了一种学习策略,可以通过梯度下降在体系结构中有效搜索。架构生成器最终将一组参数映射到我们实验中使用的CNN中。
Remote sensing image scene classification is a fundamental but challenging task in understanding remote sensing images. Recently, deep learning-based methods, especially convolutional neural network-based (CNN-based) methods have shown enormous potential to understand remote sensing images. CNN-based methods meet with success by utilizing features learned from data rather than features designed manually. The feature-learning procedure of CNN largely depends on the architecture of CNN. However, most of the architectures of CNN used for remote sensing scene classification are still designed by hand which demands a considerable amount of architecture engineering skills and domain knowledge, and it may not play CNN's maximum potential on a special dataset. In this paper, we proposed an automatically architecture learning procedure for remote sensing scene classification. We designed a parameters space in which every set of parameters represents a certain architecture of CNN (i.e., some parameters represent the type of operators used in the architecture such as convolution, pooling, no connection or identity, and the others represent the way how these operators connect). To discover the optimal set of parameters for a given dataset, we introduced a learning strategy which can allow efficient search in the architecture space by means of gradient descent. An architecture generator finally maps the set of parameters into the CNN used in our experiments.