论文标题
M17云配合物中的大规模分子气体分布:巨大恒星形成的密集气体条件?
Large-scale molecular gas distribution in the M17 cloud complex: dense gas conditions of massive star formation?
论文作者
论文摘要
分子云中气体和质体的不均匀分布是由难以分离的各种物理过程的组合引起的。我们探索了M17分子云配合物中这种不均匀的分布,该分子使用$^{12} $ CO($ j = 1-0 $)和$^{13} $ CO($ j = 1-0 $)发射线的发射线托管巨大的恒星形成活动。质量,大小和重力界限等团块特性的差异反映了M17-H {\ Scriptsize II}和M17-irdc云的不同进化阶段。 M17-H {\ ScriptSize II}云中的团块比M17-irdc中的云更浓密,更紧凑,重力更重。而M17-H {\ Scriptsize ii}的托管很大一小部分(27 \%)的柱密度大于$ \ sim $ 1 g cm $^cm $^{ - 2} $理论上预测的巨大恒星形成的阈值,而这种非常密集的气体在m17-irdc(0.46 \%)中有很密集。我们的hco $^+$($ j = 1-0 $)和hcn($ j = 1-0 $)的观察值1400万望远镜,{\ nlqb跟踪所有具有高于$ 3 \ $ 3 \ times 10^{22} $ cm $ $ $ $ $ $ $^{ - 2} $} $ 3 { - 2} $}的气体的气体,确认$ 10^$ 10^5^5 m17-irdc中的cm $^{ - 3} $。尽管M17-iRDC足够大,足以形成巨大的恒星,但其非常致密的气体和重力结合的缺乏可以解释当前缺乏巨大的恒星形成。
The non-uniform distribution of gas and protostars in molecular clouds is caused by combinations of various physical processes that are difficult to separate. We explore this non-uniform distribution in the M17 molecular cloud complex that hosts massive star formation activity using the $^{12}$CO ($J=1-0$) and $^{13}$CO ($J=1-0$) emission lines obtained with the Nobeyama 45m telescope. Differences in clump properties such as mass, size, and gravitational boundedness reflect the different evolutionary stages of the M17-H{\scriptsize II} and M17-IRDC clouds. Clumps in the M17-H{\scriptsize II} cloud are denser, more compact, and more gravitationally bound than those in M17-IRDC. While M17-H{\scriptsize II} hosts a large fraction of very dense gas (27\%) that has column density larger than the threshold of $\sim$ 1 g cm$^{-2}$ theoretically predicted for massive star formation, this very dense gas is deficient in M17-IRDC (0.46\%). Our HCO$^+$ ($J=1-0$) and HCN ($J=1-0$) observations with the TRAO 14m telescope, {\nlqb trace all gas with column density higher than $3\times 10^{22}$ cm$^{-2}$}, confirm the deficiency of high density ($\gtrsim 10^5$ cm$^{-3}$) gas in M17-IRDC. Although M17-IRDC is massive enough to potentially form massive stars, its deficiency of very dense gas and gravitationally bound clumps can explain the current lack of massive star formation.