论文标题
最小面积等同本容器
Minimum area isosceles containers
论文作者
论文摘要
我们表明,每个最小区域的等级三角形都包含一个给定的三角形$ t $ shoart和$ t $的角度。这证明了由计算问题激励的Nandakumar的猜想。我们使用结果推断出每个三角形$ t $,(1)最多$ 3 $最低面积的等速膜三角形,其中包含$ t $,并且(2)存在一个$ t $的等iSosceles三角形,其面积小于$ \ \ sqrt2 $ $ t $ $ t $的面积。这两个界限都是最好的。
We show that every minimum area isosceles triangle containing a given triangle $T$ shares a side and an angle with $T$. This proves a conjecture of Nandakumar motivated by a computational problem. We use our result to deduce that for every triangle $T$, (1) there are at most $3$ minimum area isosceles triangles that contain $T$, and (2) there exists an isosceles triangle containing $T$ whose area is smaller than $\sqrt2$ times the area of $T$. Both bounds are best possible.