论文标题

最小面积等同本容器

Minimum area isosceles containers

论文作者

Kiss, Gergely, Pach, János, Somlai, Gábor

论文摘要

我们表明,每个最小区域的等级三角形都包含一个给定的三角形$ t $ shoart和$ t $的角度。这证明了由计算问题激励的Nandakumar的猜想。我们使用结果推断出每个三角形$ t $,(1)最多$ 3 $最低面积的等速膜三角形,其中包含$ t $,并且(2)存在一个$ t $的等iSosceles三角形,其面积小于$ \ \ sqrt2 $ $ t $ $ t $的面积。这两个界限都是最好的。

We show that every minimum area isosceles triangle containing a given triangle $T$ shares a side and an angle with $T$. This proves a conjecture of Nandakumar motivated by a computational problem. We use our result to deduce that for every triangle $T$, (1) there are at most $3$ minimum area isosceles triangles that contain $T$, and (2) there exists an isosceles triangle containing $T$ whose area is smaller than $\sqrt2$ times the area of $T$. Both bounds are best possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源