论文标题
语音触发检测的多任务学习
Multi-task Learning for Voice Trigger Detection
论文作者
论文摘要
我们描述了针对智能扬声器的语音触发检测系统的设计。在这项研究中,我们解决了两个主要挑战。首先是将探测器部署在复杂的声学环境中,并由设备本身部署具有外部噪声和大声播放的探测器。其次,为特定关键字或触发短语收集培训示例是具有挑战性的,导致触发短语特定的训练数据稀缺。我们描述了一个两阶段的级联体系结构,其中低功率检测器总是在运行并聆听触发短语。如果在此阶段进行检测,则候选音频段将由较大,更复杂的模型重新评估,以验证该段是否包含触发短语。在这项研究中,我们将注意力集中在这些二级探测器的结构和设计上。我们首先训练一个通用的声学模型,该模型在给定大型标记的训练数据集的情况下会产生语音转录。接下来,我们收集了一个较小的示例数据集,这些示例对基线系统充满挑战。然后,我们使用多任务学习来训练模型,以同时在较大的数据集\ emph {and}上产生准确的语音转录,并使用较小的数据集区分了真实和易于混淆的示例。我们的结果表明,与基线相比,在一系列具有挑战性的测试条件\ emph {而无需额外参数的情况下,提出的模型将错误减少了一半。
We describe the design of a voice trigger detection system for smart speakers. In this study, we address two major challenges. The first is that the detectors are deployed in complex acoustic environments with external noise and loud playback by the device itself. Secondly, collecting training examples for a specific keyword or trigger phrase is challenging resulting in a scarcity of trigger phrase specific training data. We describe a two-stage cascaded architecture where a low-power detector is always running and listening for the trigger phrase. If a detection is made at this stage, the candidate audio segment is re-scored by larger, more complex models to verify that the segment contains the trigger phrase. In this study, we focus our attention on the architecture and design of these second-pass detectors. We start by training a general acoustic model that produces phonetic transcriptions given a large labelled training dataset. Next, we collect a much smaller dataset of examples that are challenging for the baseline system. We then use multi-task learning to train a model to simultaneously produce accurate phonetic transcriptions on the larger dataset \emph{and} discriminate between true and easily confusable examples using the smaller dataset. Our results demonstrate that the proposed model reduces errors by half compared to the baseline in a range of challenging test conditions \emph{without} requiring extra parameters.