论文标题
脑转移分割网络,对具有多个假否定的注释训练有素训练
Brain Metastasis Segmentation Network Trained with Robustness to Annotations with Multiple False Negatives
论文作者
论文摘要
事实证明,深度学习是医学图像分析的重要工具。但是,需要准确标记的输入数据,通常需要专家的时间和劳动密集型注释,这是对深度学习使用的主要限制。解决这一挑战的一种解决方案是允许使用粗或嘈杂的标签,这可以允许对图像的更有效,可扩展的标签。在这项工作中,我们基于熵正规化开发了一个偏斜的损失函数,该函数假设目标注释中存在非平凡的假阴性率。从经过精心注释的脑转移病变数据集开始,我们通过(1)随机审查带注释的病变和(2)系统地审查最小的病变,从而模拟了错误的负nater。后者更好的是真正的医师错误,因为较小的病变比较大的病变更难注意到。即使模拟的假阴性率高达50%,使用我们的损失函数随机审查数据的最大敏感性在基线的97%(未经审查的培训数据)下保留了最大敏感性,而标准损失函数仅为10%。对于基于尺寸的审查制度,在我们不平衡的自举损失的情况下,绩效从当前标准的17%恢复到88%。与创建更有效的用户界面和注释工具的其他方法同时,我们的工作将启用图像标签过程的更有效的缩放。
Deep learning has proven to be an essential tool for medical image analysis. However, the need for accurately labeled input data, often requiring time- and labor-intensive annotation by experts, is a major limitation to the use of deep learning. One solution to this challenge is to allow for use of coarse or noisy labels, which could permit more efficient and scalable labeling of images. In this work, we develop a lopsided loss function based on entropy regularization that assumes the existence of a nontrivial false negative rate in the target annotations. Starting with a carefully annotated brain metastasis lesion dataset, we simulate data with false negatives by (1) randomly censoring the annotated lesions and (2) systematically censoring the smallest lesions. The latter better models true physician error because smaller lesions are harder to notice than the larger ones. Even with a simulated false negative rate as high as 50%, applying our loss function to randomly censored data preserves maximum sensitivity at 97% of the baseline with uncensored training data, compared to just 10% for a standard loss function. For the size-based censorship, performance is restored from 17% with the current standard to 88% with our lopsided bootstrap loss. Our work will enable more efficient scaling of the image labeling process, in parallel with other approaches on creating more efficient user interfaces and tools for annotation.