论文标题

布朗运动的嘈杂优化的紧密遗憾界限

Tight Regret Bounds for Noisy Optimization of a Brownian Motion

论文作者

Wang, Zexin, Tan, Vincent Y. F., Scarlett, Jonathan

论文摘要

我们考虑了贝叶斯优化一维的布朗尼运动的问题,其中$ t $自适应地选择的观察结果被高斯噪音损坏。我们表明,作为最小的预期累积遗憾和最小的预期简单遗憾量表为$ω(σ\ sqrt {t / \ log(t)})\ cap \ cap \ mathcal {o}(σ\ sqrt {t} \ cdot \ cdot \ log t) \ Mathcal {o}(σ\ log t / \ sqrt {t})$,其中$σ^2 $是噪声方差。因此,我们的上限和下界紧密至$ \ Mathcal {o}((\ log t)^{1.5})$。上限使用基于置信度和布朗运动的马尔可夫特性(除其他有用属性)的算法,并且下限是基于对二元假设检验的降低。

We consider the problem of Bayesian optimization of a one-dimensional Brownian motion in which the $T$ adaptively chosen observations are corrupted by Gaussian noise. We show that as the smallest possible expected cumulative regret and the smallest possible expected simple regret scale as $Ω(σ\sqrt{T / \log (T)}) \cap \mathcal{O}(σ\sqrt{T} \cdot \log T)$ and $Ω(σ/ \sqrt{T \log (T)}) \cap \mathcal{O}(σ\log T / \sqrt{T})$ respectively, where $σ^2$ is the noise variance. Thus, our upper and lower bounds are tight up to a factor of $\mathcal{O}( (\log T)^{1.5} )$. The upper bound uses an algorithm based on confidence bounds and the Markov property of Brownian motion (among other useful properties), and the lower bound is based on a reduction to binary hypothesis testing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源