论文标题

不确定sublinear Robin问题的非负解决方案II:本地和全球精确性结果

Nonnegative solutions of an indefinite sublinear Robin problem II: local and global exactness results

论文作者

Kaufmann, Uriel, Quoirin, Humberto Ramos, Umezu, Kenichiro

论文摘要

我们进一步调查了罗宾问题$(p_α)$:$-ΔU= a(x)u^{q} $ in $ω$,$ u \ u \ geq0 $ in $ω$,$ \partial_νu=αu$partial_νu=αu$ on $ \ partialω$;在有限的域上,$ω\ subset \ mathbb {r}^{n} $,带有$ a $ sign-changing和$ 0 <q <1 $。假设存在$α= 0 $的积极解决方案(如果$ Q $足够接近1),我们将$ $α> 0 $的非平底解决方案集的描述(p_α)$锐化。此外,加强对$ a $ a $ a和$ q $的假设,我们提供了全球(即,对于每$α> 0 $)的精确性,结果$(p_α)$的解决方案数量。我们的方法还适用于问题$(s_α)$:$-ΔU=αu + a(x)u^{q} $ in $ω$,$ u \ u \ geq0 $ in $ω$,$ \partial_νu= 0 $ on $ \ \ partialω$。

We go further in the investigation of the Robin problem $(P_α)$: $-Δu=a(x)u^{q}$ in $Ω$, $u\geq0$ in $Ω$, $\partial_νu=αu$ on $\partial Ω$; on a bounded domain $Ω\subset\mathbb{R}^{N}$, with $a$ sign-changing and $0<q<1$. Assuming the existence of a positive solution for $α=0$ (which holds if $q$ is close enough to 1), we sharpen the description of the nontrivial solution set of $(P_α)$ for $α>0$. Moreover, strengthening the assumptions on $a$ and $q$ we provide a global (i.e. for every $α>0$) exactness result on the number of solutions of $(P_α)$ . Our approach also applies to the problem $(S_α)$: $-Δu=αu + a(x)u^{q}$ in $Ω$, $u\geq0$ in $Ω$, $\partial_νu=0$ on $\partial Ω$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源