论文标题
嵌入在导电介质中的圆柱天线的减轻振荡性近似内核溶液:一种数值和渐近研究
Alleviating Oscillatory Approximate-Kernel Solutions for Cylindrical Antennas Embedded in a Conducting Medium: a Numerical and Asymptotic Study
论文作者
论文摘要
我们沿着线性圆柱天线沿着由三角函数发电机驱动并嵌入在导电介质中的线性圆柱天线中心沿线性圆柱天线中心沿线性圆柱天线中心发生的非天然振荡。对于天线理论的经典积分方程的小$ Z_0 $渐近(或数值),对于无限(或有限)长度的圆柱偶极偶极子,在其中$ z_0 $是离散的长度。为了减轻振荡,我们进一步采用了适当的有效电流,以实现在周围培养基是自由空间的情况下,用于完美地执行有限长度的线性圆柱天线的振荡。我们为无限天线提供了渐近公式,该公式进行了数值测试,并指出了超越仅计算设备的有效电流的物理意义。
We alleviate the unnatural oscillations occurring in the current distribution along a linear cylindrical antenna center-driven by a delta-function generator and embedded in a conducting medium. The intensely fluctuating current arises as a small-$z_0$ asymptotic (or numerical) solution of the classical integral equations of antenna theory, for a cylindrical dipole of infinite (or finite) length, where $z_0$ is the discretization length. To alleviate the oscillations, we employ an appropriate effective current further to the recent remedy of oscillations attained for a perfectly conducting linear cylindrical antenna of finite length for the case where the surrounding medium is free space. We derive asymptotic formulas for the infinite antenna which are put to numerical test, and point to the physical significance of the effective current which transcends a mere computational device.