论文标题
$ l $ functions的联合极值
Joint Extreme values of $L$-functions
论文作者
论文摘要
我们考虑$ l $ functions $ l_1,\ ldots,l_k $来自Selberg类,它们具有多项式Euler产品并满足Selberg的正常情况。我们表明,在每条垂直线上$ s =σ+it $ a $ in(1/2,1)$ in(1/2,1)$,这些$ l $ functions同时采用$ \ exp \ weft的巨大值(c \ frac {(\ log t)^{1- = {1-σ}}}}}} {\ log \ log t} {\ f \ \ log \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ right)。
We consider $L$-functions $L_1,\ldots,L_k$ from the Selberg class which have polynomial Euler product and satisfy Selberg's orthonormality condition. We show that on every vertical line $s=σ+it$ with $σ\in(1/2,1)$, these $L$-functions simultaneously take large values of size $\exp\left(c\frac{(\log t)^{1-σ}}{\log\log t}\right)$ inside a small neighborhood.