论文标题

案例研究:通过社会服务干预措施减少轻罪累犯的预测公平

Case Study: Predictive Fairness to Reduce Misdemeanor Recidivism Through Social Service Interventions

论文作者

Rodolfa, Kit T., Salomon, Erika, Haynes, Lauren, Mendieta, Ivan Higuera, Larson, Jamie, Ghani, Rayid

论文摘要

目前,刑事司法系统不足以改善以一系列轻罪犯罪进出系统的个人的预后。通常,由于案件销售的限制和记录连锁不佳的限制,当一个人返回系统时,可能不会考虑与个人的先前互动,更不用说通过应用转移程序以主动的方式进行了。洛杉矶市检察官办公室最近创建了一个新的减少累犯和毒品转移部门(R2D2),负责减少该人群的累犯。在这里,我们将与这个新单元的合作描述为一个案例研究,以将预测权益纳入基于机器学习的决策中,以在资源受限的环境中。该计划试图通过开发单独计算的社会服务干预措施(即,基于适当的社会服务链接而不是传统量刑方法的人的转移,有条件的认罪协议,保持量刑或其他有利的案件处置),以使可能与犯罪司法系统进行后续互动,使人有可能涉及一项能力的人,以使人们有可能获得一定的能力,从而使人们有可能经历一定的能力。寻求提高效率(通过预测性的准确性)和公平性(改善传统服务不足的社区的成果,并努力减轻刑事司法结果的现有差异),我们讨论我们寻求实现的公平成果,描述在这种情况下衡量预测性公平的相应选择,并在建立平衡效率和效率方面进行衡量预测性的衡量标准,并选择了一组构建机器和效率的机器,并选择了机器的选择。

The criminal justice system is currently ill-equipped to improve outcomes of individuals who cycle in and out of the system with a series of misdemeanor offenses. Often due to constraints of caseload and poor record linkage, prior interactions with an individual may not be considered when an individual comes back into the system, let alone in a proactive manner through the application of diversion programs. The Los Angeles City Attorney's Office recently created a new Recidivism Reduction and Drug Diversion unit (R2D2) tasked with reducing recidivism in this population. Here we describe a collaboration with this new unit as a case study for the incorporation of predictive equity into machine learning based decision making in a resource-constrained setting. The program seeks to improve outcomes by developing individually-tailored social service interventions (i.e., diversions, conditional plea agreements, stayed sentencing, or other favorable case disposition based on appropriate social service linkage rather than traditional sentencing methods) for individuals likely to experience subsequent interactions with the criminal justice system, a time and resource-intensive undertaking that necessitates an ability to focus resources on individuals most likely to be involved in a future case. Seeking to achieve both efficiency (through predictive accuracy) and equity (improving outcomes in traditionally under-served communities and working to mitigate existing disparities in criminal justice outcomes), we discuss the equity outcomes we seek to achieve, describe the corresponding choice of a metric for measuring predictive fairness in this context, and explore a set of options for balancing equity and efficiency when building and selecting machine learning models in an operational public policy setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源