论文标题
使用深厚的强化学习的雾化应用的上下文感知分布
Context-aware Distribution of Fog Applications Using Deep Reinforcement Learning
论文作者
论文摘要
雾计算是一种新兴的范式,旨在满足与互联网连接的数十亿个设备产生的日益计算需求。从云到网络边缘的应用程序的卸载服务可以改善应用程序的总体服务质量(QoS),因为它可以更接近用户设备处理数据。从Wi-Fi路由器到具有不同资源功能的迷你云的各种雾气节点,确定需要卸载的应用程序服务的哪些服务变得具有挑战性。在本文中,提出了用于在云和雾上分配应用程序的上下文感知机制。该机制动态生成应用程序的部署计划,以通过考虑QoS和运行成本来最大化应用程序的性能效率。该机制依赖于深Q-Networks生成分发计划,而没有事先了解FOG节点,网络条件和应用程序上的可用资源。在两个用例中,即面部检测应用程序和基于位置的手机游戏,都证明了拟议的上下文感知分配机制的可行性。与现有研究中使用的静态分布方法相比,两种用例中动态分布的效用都会增加。
Fog computing is an emerging paradigm that aims to meet the increasing computation demands arising from the billions of devices connected to the Internet. Offloading services of an application from the Cloud to the edge of the network can improve the overall Quality-of-Service (QoS) of the application since it can process data closer to user devices. Diverse Fog nodes ranging from Wi-Fi routers to mini-clouds with varying resource capabilities makes it challenging to determine which services of an application need to be offloaded. In this paper, a context-aware mechanism for distributing applications across the Cloud and the Fog is proposed. The mechanism dynamically generates (re)deployment plans for the application to maximise the performance efficiency of the application by taking the QoS and running costs into account. The mechanism relies on deep Q-networks to generate a distribution plan without prior knowledge of the available resources on the Fog node, the network condition and the application. The feasibility of the proposed context-aware distribution mechanism is demonstrated on two use-cases, namely a face detection application and a location-based mobile game. The benefits are increased utility of dynamic distribution in both use cases, when compared to a static distribution approach used in existing research.