论文标题
随着时间的推移,具有Zygmund连续系数的双曲线操作员的衍生物损失
No loss of derivatives for hyperbolic operators with Zygmund-continuous coefficients in time
论文作者
论文摘要
在本说明中,我们证明了良好的结果,而没有衍生物的损失,对于严格的双曲波算子,其系数在时间变量中具有Zygmund连续的系数,并且在空间变量中是连续的。证明是基于塔拉玛(Tarama)在能量中引入较低阶纠正器的想法,以便在计算其时间衍生物时产生特殊的代数取消,并结合范例分化的计算与参数结合,以处理与$ x $相对于$ x $的系数的低规律性。
In this note we prove a well-posedness result, without loss of derivatives, for strictly hyperbolic wave operators having coefficients which are Zygmund-continuous in the time variable and Lipschitz-continuous in the space variables. The proof is based on Tarama's idea of introducing a lower order corrector in the energy, in order to produce special algebraic cancellations when computing its time derivative, combined with paradifferential calculus with parameters, in order to handle the low regularity of the coefficients with respect to $x$.