论文标题

分区产品和传播方程,并应用于Moufang定理

Subdirect products and propagating equations with an application to Moufang theorem

论文作者

Drápal, Aleš, Vojtěchovský, Petr

论文摘要

我们介绍了传播方程式的概念,并专注于在各种循环中传播关联的情况。 如果每当$ \ varepsilon(\ varepsilon $ \ varepsilon(\ costrightArrow x)$持有,并且$ \ overrightArrow y $均包含$ x $ x $ x $ x $ x $ x $ x $ x $ x,则方程$ \ varepsilon $在代数$ x $中传播。如果$ \ varepsilon $ in $ x $繁殖,则它将在所有亚代词和$ x $的产品中繁殖,但不一定在所有同构图像中的$ x $。如果$ \ mathcal v $是一种多样性,那么传播核心$ \ Mathcal V _ {[\ Varepsilon]} = \ {x \ in \ Mathcal V:\ varepsilon $ in $ x \ \} $ specagates $ specagaTes $是一种难题,但不一定是一种品种。 我们通过基础证明了Goursat的Lemma用于循环的引理,并描述了$ X^K $的所有细分产品,以及所有有限生成的LOOPS in $ \ MATHBF {hsp}(X)$用于非ABELIAN简单Loop $ x $。如果$ \ MATHCAL V $是各种循环,可以在其中传播关联性,则$ x $是一个有限的环路,在该环路中,关联性繁殖和每一个$ x $的每个subloop都是简单的,或包含在$ \ MATHCAL V $中,然后是$ \ \ alsbf {hsp}(hsp}(hsp}(x)(x)\ lor \ lor \ lor \ lor \ lor \ lor \ v $ \ lor \ v $ \ lor \ v $ \ lor \ v $ \ lor v $ 我们研究了Steiner Loops of Associativity的传播核心$ \ Mathcal S _ {[x(yz)=(xy)z]} $。虽然这不是一个品种,但我们展示了$ \ Mathcal s _ {[x(yz)=(xy)z]} $中包含的许多品种,每个品种都为Rajah的问题提供了解决方案,即在Moufang loops中不包含的各种环。

We introduce the concept of propagating equations and focus on the case of associativity propagating in varieties of loops. An equation $\varepsilon$ propagates in an algebra $X$ if $\varepsilon(\overrightarrow y)$ holds whenever $\varepsilon(\overrightarrow x)$ holds and the elements of $\overrightarrow y$ are contained in the subalgebra of $X$ generated by $\overrightarrow x$. If $\varepsilon$ propagates in $X$ then it propagates in all subalgebras and products of $X$ but not necessarily in all homomorphic images of $X$. If $\mathcal V$ is a variety, the propagating core $\mathcal V_{[\varepsilon]} = \{X\in\mathcal V:\varepsilon$ propagates in $X\}$ is a quasivariety but not necessarily a variety. We prove by elementary means Goursat's Lemma for loops and describe all subdirect products of $X^k$ and all finitely generated loops in $\mathbf{HSP}(X)$ for a nonabelian simple loop $X$. If $\mathcal V$ is a variety of loops in which associativity propagates, $X$ is a finite loop in which associativity propagates and every subloop of $X$ is either nonabelian simple or contained in $\mathcal V$, then associativity propagates in $\mathbf{HSP}(X)\lor\mathcal V$. We study the propagating core $\mathcal S_{[x(yz)=(xy)z]}$ of Steiner loops with respect to associativity. While this is not a variety, we exhibit many varieties contained in $\mathcal S_{[x(yz)=(xy)z]}$, each providing a solution to Rajah's problem, i.e., a variety of loops not contained in Moufang loops in which Moufang Theorem holds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源