论文标题
可压缩欧拉系统的低马赫和薄域极限
Low Mach and thin domain limit for the compressible Euler system
论文作者
论文摘要
我们考虑了可压缩的Euler系统,描述了局限于直层$ω_Δ=(0,δ)\ times \ mathbb {r}^2,\ \ \Δ> 0 $的运动。在耗散度量值解决方案的框架中,当马赫数趋于零,$δ\ rightarrow0 $时,我们显示了与2D不可压缩欧拉系统的强溶液的收敛性。
We consider the compressible Euler system describing the motion of an ideal fluid confined to a straight layer $Ω_δ=(0,δ)\times\mathbb{R}^2, \ \ δ>0$. In the framework of dissipative measure-valued solutions, we show the convergence to the strong solution of the 2D incompressible Euler system when the Mach number tends to zero and $δ\rightarrow0$.