论文标题

关于地方理论中的de Morgan Law的无限变体

On infinite variants of De Morgan law in locale theory

论文作者

Arrieta, Igor

论文摘要

作为一个完整的Heyting代数,可以满足De Morgan Law $(A \ VEE B)^*= A^*\ Wedge B^*$的伪造。双摩根法律$(a \ wedge b)^*= {a^*\ vee b^*} $(此处称为第二个摩根定律)等同于$(a \ vee b)^{**} = a^{**} = a^a^{**} \ vee b^{本文介绍了一项研究,该研究由第二次De Morgan Law及其等效的无限版本确定的极端断开的地区的子类。

A locale, being a complete Heyting algebra, satisfies De Morgan law $(a\vee b)^*=a^*\wedge b^*$ for pseudocomplements. The dual De Morgan law $(a\wedge b)^*={a^* \vee b^*}$ (here referred to as the second De Morgan law) is equivalent to, among other conditions, $(a\vee b)^{**} =a^{**}\vee b^{**}$, and characterizes the class of extremally disconnected locales. This paper presents a study of the subclasses of extremally disconnected locales determined by the infinite versions of the second De Morgan law and its equivalents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源