论文标题

光学共振旋转噪声光谱

Optical Resonance Shift Spin Noise Spectroscopy

论文作者

Smirnov, D. S., Kavokin, K. V.

论文摘要

量子自旋波动为研究旋转动力学而无需系统扰动提供了独特的方法。在这里,我们提出了一个光学共振旋转噪声光谱,作为一种强大的工具,可以测量从固体中的磁杂质到游离原子和分子的各种系统的自旋噪声。这些系统中的量子自旋波动可以比均匀的线宽更多地转移光学共振,并产生巨大的法拉第旋转噪声。我们证明,共振移位旋转噪声光谱使访问高阶自旋相关器,该旋转相关器包含有关旋转动力学的完整信息,与通过常规的Pauli-blocking自旋噪声光谱测量的二阶相关器相比。高阶量子自旋相关器在横向磁场中的法拉第旋转噪声光谱中表现为峰的梳子。这种效应与在掺杂MN的纳米结构中观察到的多蛋白翻转拉曼散射密切相关。

Quantum spin fluctuations provide a unique way to study spin dynamics without system perturbation. Here we put forward an optical resonance shift spin noise spectroscopy as a powerful tool to measure the spin noise of various systems from magnetic impurities in solids to free atoms and molecules. The quantum spin fluctuations in these systems can shift the optical resonances by more than the homogeneous linewidth and produce huge Faraday rotation noise. We demonstrate, that the resonance shift spin noise spectroscopy gives access to the high order spin correlators, which contain complete information about the spin dynamics in contrast with the second order correlator measured by conventional Pauli-blocking spin noise spectroscopy. The high order quantum spin correlators manifest themselves as a comb of peaks in the Faraday rotation noise spectra in transverse magnetic field. This effect is closely related with the multispin flip Raman scattering observed in the Mn-doped nanostructures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源