论文标题
明显的超源泛音表面的模量空间
The moduli space of marked supersingular Enriques surfaces
论文作者
论文摘要
我们构建了一个充分标记的Enriques表面的模量空间,该空间在特征性$ p \ geq 3 $的字段上具有超强的K3覆盖率。我们表明,这个模量空间作为$ \ mathbb {f} _p $的有限类型本地的方案存在。此外,存在从该模量空间到周期方案的周期图,我们获得了用于超级富函数表面的Torelli定理。
We construct a moduli space of adequately marked Enriques surfaces that have a supersingular K3 cover over fields of characteristic $p \geq 3$. We show that this moduli space exists as a scheme locally of finite type over $\mathbb{F}_p$. Moreover, there exists a period map from this moduli space to a period scheme and we obtain a Torelli theorem for supersingular Enriques surfaces.