论文标题

明显的超源泛音表面的模量空间

The moduli space of marked supersingular Enriques surfaces

论文作者

Behrens, Kai

论文摘要

我们构建了一个充分标记的Enriques表面的模量空间,该空间在特征性$ p \ geq 3 $的字段上具有超强的K3覆盖率。我们表明,这个模量空间作为$ \ mathbb {f} _p $的有限类型本地的方案存在。此外,存在从该模量空间到周期方案的周期图,我们获得了用于超级富函数表面的Torelli定理。

We construct a moduli space of adequately marked Enriques surfaces that have a supersingular K3 cover over fields of characteristic $p \geq 3$. We show that this moduli space exists as a scheme locally of finite type over $\mathbb{F}_p$. Moreover, there exists a period map from this moduli space to a period scheme and we obtain a Torelli theorem for supersingular Enriques surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源