论文标题
基于矩阵分解的关节地理和时间建模,用于利息点建议
Joint Geographical and Temporal Modeling based on Matrix Factorization for Point-of-Interest Recommendation
论文作者
论文摘要
随着基于位置的社交网络的普及,利益点(POI)的推荐已成为一项重要任务,它可以学习用户的偏好和移动性模式来推荐POIS。先前的研究表明,通过解决数据稀疏问题来提高POI建议是必要的,诸如地理和时间影响之类的上下文信息(例如地理和时间影响)是必要的。但是,现有方法基于POI和用户之间的物理距离对地理影响进行了建模,同时忽略了这种地理影响的时间特征。在本文中,我们对用户移动性模式进行了一项研究,我们发现用户的检查发生在几个中心附近,具体取决于其当前的时间状态。接下来,我们提出了一种时空活动中心算法,以更准确地对用户的行为进行建模。最后,我们通过将其纳入两个不同的设置下的矩阵分解模型中来证明我们提出的上下文模型的有效性:i)静态和ii)时间。为了显示我们提出的方法的有效性,我们称为STACP,我们对从Gowalla和Foursquare LBSNS获得的两个著名的现实世界数据集进行了实验。实验结果表明,与最新技术相比,STACP模型可实现统计学上显着的性能改善。此外,我们证明了捕获地理和时间信息以建模用户的活动中心以及共同建模的重要性的有效性。
With the popularity of Location-based Social Networks, Point-of-Interest (POI) recommendation has become an important task, which learns the users' preferences and mobility patterns to recommend POIs. Previous studies show that incorporating contextual information such as geographical and temporal influences is necessary to improve POI recommendation by addressing the data sparsity problem. However, existing methods model the geographical influence based on the physical distance between POIs and users, while ignoring the temporal characteristics of such geographical influences. In this paper, we perform a study on the user mobility patterns where we find out that users' check-ins happen around several centers depending on their current temporal state. Next, we propose a spatio-temporal activity-centers algorithm to model users' behavior more accurately. Finally, we demonstrate the effectiveness of our proposed contextual model by incorporating it into the matrix factorization model under two different settings: i) static and ii) temporal. To show the effectiveness of our proposed method, which we refer to as STACP, we conduct experiments on two well-known real-world datasets acquired from Gowalla and Foursquare LBSNs. Experimental results show that the STACP model achieves a statistically significant performance improvement, compared to the state-of-the-art techniques. Also, we demonstrate the effectiveness of capturing geographical and temporal information for modeling users' activity centers and the importance of modeling them jointly.