论文标题
在多孔介质中,有限元法的收敛性两相流量的收敛性
Convergence of a finite element method for degenerate two-phase flow in porous media
论文作者
论文摘要
制定了一种有限元方法,具有质量倾斜和通量向上的方法,用于解决多孔培养基中不混溶的两相流问题。该方法直接近似于润湿相的压力和饱和度,这是主要未知数。离散饱和度满足最大原理。理论收敛是通过紧凑的论点证明的。由于相位迁移率的堕落和毛细管压力的无限性,证明是复杂的。
A finite element method with mass-lumping and flux upwinding, is formulated for solving the immiscible two-phase flow problem in porous media. The method approximates directly the wetting phase pressure and saturation, which are the primary unknowns. The discrete saturation satisfies a maximum principle. Theoretical convergence is proved via a compactness argument. The proof is convoluted because of the degeneracy of the phase mobilities and the unboundedness of the capillary pressure.