论文标题

在多孔介质中,有限元法的收敛性两相流量的收敛性

Convergence of a finite element method for degenerate two-phase flow in porous media

论文作者

Vivette, Girault, Beatrice, Riviere, Loic, Cappanera

论文摘要

制定了一种有限元方法,具有质量倾斜和通量向上的方法,用于解决多孔培养基中不混溶的两相流问题。该方法直接近似于润湿相的压力和饱和度,这是主要未知数。离散饱和度满足最大原理。理论收敛是通过紧凑的论点证明的。由于相位迁移率的堕落和毛细管压力的无限性,证明是复杂的。

A finite element method with mass-lumping and flux upwinding, is formulated for solving the immiscible two-phase flow problem in porous media. The method approximates directly the wetting phase pressure and saturation, which are the primary unknowns. The discrete saturation satisfies a maximum principle. Theoretical convergence is proved via a compactness argument. The proof is convoluted because of the degeneracy of the phase mobilities and the unboundedness of the capillary pressure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源