论文标题

用量子说明编程量子计算机

Programming a quantum computer with quantum instructions

论文作者

Kjaergaard, Morten, Schwartz, Mollie E., Greene, Ami, Samach, Gabriel O., Bengtsson, Andreas, O'Keeffe, Michael, McNally, Christopher M., Braumüller, Jochen, Kim, David K., Krantz, Philip, Marvian, Milad, Melville, Alexander, Niedzielski, Bethany M., Sung, Youngkyu, Winik, Roni, Yoder, Jonilyn, Rosenberg, Danna, Obenland, Kevin, Lloyd, Seth, Orlando, Terry P., Marvian, Iman, Gustavsson, Simon, Oliver, William D.

论文摘要

用于定义程序的指令与指令操作的输入数据之间的等价性是经典计算机体系结构和编程的基本原理。用量子状态替换经典数据可以从根本上为许多应用提供缩放优势,并提出了许多模型来实现量子计算。但是,在每个模型中,量子数据都由一组使用单独经典信息编译的门转换。因此,传统的量子计算模型破坏了指令数据对称性:经典指令和量子数据不可直接互换。在这项工作中,我们使用密度矩阵启动协议来执行量子数据的量子指令。在这种方法中,固定的经典门对执行唯一取决于辅助量子指令状态的操作。我们的演示依赖于99.7%的忠诚度控制的相位门,该遗迹使用了两个可调的超导式transmon Qubits实施,这使得在电路深度上超过90%超过70的算法忠诚度超过了90%。量子指令的利用可促进昂贵的状态调整的需求,并促进繁殖范围,并将其置于等效范围,并构成一定的范围。量子主成分分析,纠缠光谱的测量和通用量子仿真。

The equivalence between the instructions used to define programs and the input data on which the instructions operate is a basic principle of classical computer architectures and programming. Replacing classical data with quantum states enables fundamentally new computational capabilities with scaling advantages for many applications, and numerous models have been proposed for realizing quantum computation. However, within each of these models, the quantum data are transformed by a set of gates that are compiled using solely classical information. Conventional quantum computing models thus break the instruction-data symmetry: classical instructions and quantum data are not directly interchangeable. In this work, we use a density matrix exponentiation protocol to execute quantum instructions on quantum data. In this approach, a fixed sequence of classically-defined gates performs an operation that uniquely depends on an auxiliary quantum instruction state. Our demonstration relies on a 99.7% fidelity controlled-phase gate implemented using two tunable superconducting transmon qubits, which enables an algorithmic fidelity surpassing 90% at circuit depths exceeding 70. The utilization of quantum instructions obviates the need for costly tomographic state reconstruction and recompilation, thereby enabling exponential speedup for a broad range of algorithms, including quantum principal component analysis, the measurement of entanglement spectra, and universal quantum emulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源