论文标题
使用正交家庭在$ \ mathbb r $上的分数拉普拉斯的数值近似
Numerical Approximation of the Fractional Laplacian on $\mathbb R$ Using Orthogonal Families
论文作者
论文摘要
在本文中,使用众所周知的复杂变量技术,我们根据$ {} _ 2f_1 $高斯超测量函数明确地计算了Higgins功能的一维分数Laplacian,Christov函数,以及它们的正弦和宇宙般的版本。在讨论了提出的公式实施中的数值困难之后,我们使用可变精度算术的方法开发了一种方法,从而得出准确的结果。
In this paper, using well-known complex variable techniques, we compute explicitly, in terms of the ${}_2F_1$ Gaussian hypergeometric function, the one-dimensional fractional Laplacian of the Higgins functions, the Christov functions, and their sine-like and cosine-like versions. After discussing the numerical difficulties in the implementation of the proposed formulas, we develop a method using variable precision arithmetic that gives accurate results.