论文标题
拓扑度量检测无序媒体中的隐藏顺序
Topological metric detects hidden order in disordered media
论文作者
论文摘要
显微镜技术的最新进展使得可以研究单细胞分辨率的复杂生物物理系统的生长,动态和反应,从细菌群落到组织和类器官。与有序的晶体相反,人们如何可靠地区分两种无定形但结构上不同的细胞材料并不明显。在这里,我们介绍了无序结构之间的拓扑成分(TEM)距离,以比较微观细胞中心网络的局部图邻居。 TEM度量可以利用邻里基序分布中包含的结构信息,可以单独使用静态系统快照的平衡和非平衡相位空间以及嵌入式途径进行可解释的重建。该框架应用于细胞分辨率成像数据,在没有有关基础动力学的先验知识的情况下恢复了时间顺序,揭示了飞翼发展解决了拓扑最佳运输问题。将我们的拓扑分析扩展到细菌群,我们发现与Tracy-Widom定律一致的通用邻域大小分布。
Recent advances in microscopy techniques make it possible to study the growth, dynamics, and response of complex biophysical systems at single-cell resolution, from bacterial communities to tissues and organoids. In contrast to ordered crystals, it is less obvious how one can reliably distinguish two amorphous yet structurally different cellular materials. Here, we introduce a topological earth mover's (TEM) distance between disordered structures that compares local graph neighborhoods of the microscopic cell-centroid networks. Leveraging structural information contained in the neighborhood motif distributions, the TEM metric allows an interpretable reconstruction of equilibrium and non-equilibrium phase spaces and embedded pathways from static system snapshots alone. Applied to cell-resolution imaging data, the framework recovers time-ordering without prior knowledge about the underlying dynamics, revealing that fly wing development solves a topological optimal transport problem. Extending our topological analysis to bacterial swarms, we find a universal neighborhood size distribution consistent with a Tracy-Widom law.