论文标题

使用深度解码器减少GAN图像先验的表示误差

Reducing the Representation Error of GAN Image Priors Using the Deep Decoder

论文作者

Daniels, Max, Hand, Paul, Heckel, Reinhard

论文摘要

诸如gan之类的生成模型学习特定类别类别的显式低维表示,因此它们可以用作自然图像先验,以解决诸如图像恢复和压缩感应等反问题。 GAN先验在这些任务上表现出了令人印象深刻的性能,但是由于学到的,近似图像分布和数据生成分布之间的不匹配,它们在分布和分发图像中都可以表现出很大的表示错误。在本文中,我们演示了一种通过将图像建模为GAN先验与深层解码器的线性组合来减少GAN先验的表示误差的方法。深度解码器是类似于且最重要的自然信号模型,类似于先验的深图像。在培训我们的方法的基础培训时,不需要具体的反问题。对于压缩感测和图像超分辨率,我们的混合模型在分布和分布外图像上分别表现出比单独的GAN先验和深层解码器更高的PSNR。该模型提供了一种方法,可以广泛,廉价地利用在反问题中学习的益处和未学习的图像恢复先验的好处。

Generative models, such as GANs, learn an explicit low-dimensional representation of a particular class of images, and so they may be used as natural image priors for solving inverse problems such as image restoration and compressive sensing. GAN priors have demonstrated impressive performance on these tasks, but they can exhibit substantial representation error for both in-distribution and out-of-distribution images, because of the mismatch between the learned, approximate image distribution and the data generating distribution. In this paper, we demonstrate a method for reducing the representation error of GAN priors by modeling images as the linear combination of a GAN prior with a Deep Decoder. The deep decoder is an underparameterized and most importantly unlearned natural signal model similar to the Deep Image Prior. No knowledge of the specific inverse problem is needed in the training of the GAN underlying our method. For compressive sensing and image superresolution, our hybrid model exhibits consistently higher PSNRs than both the GAN priors and Deep Decoder separately, both on in-distribution and out-of-distribution images. This model provides a method for extensibly and cheaply leveraging both the benefits of learned and unlearned image recovery priors in inverse problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源