论文标题

Ultrastrong轻质互动的理论方法

Theoretical methods for ultrastrong light-matter interactions

论文作者

Boité, Alexandre Le

论文摘要

本文回顾了在过去十年中开发的理论方法,以了解超抗耦合方案中的空腔量子电动力学,其中光 - 偶像相互作用的强度与光子频率相当。除了对基本量子光学效应的深刻修改,从而引起了丰富的现象学,该制度还引入了重大的理论挑战。最重要的之一是旋转波近似的分解,该近似忽略了轻度互动的汉密尔顿人的所有非共鸣术语。因此,必须重新审视量子光学理论框架的很大一部分,以便准确说明此制度中的所有相互作用项。我们在本文中概述了最近的进展,从地面特性的分析估计到主方程的适当推导以及光电检测信号的计算。对于理论的每个方面,这些方法的基本原理在范式模型(例如量子狂犬病和自旋 - 玻色子模型)上进行了说明。本着这种精神,本文的大部分专门用于有效的模型,这与已达到超级耦合的各种实验平台有关,例如半导体微腔和超导电路。这些模型的有效性在本文的最后一部分中讨论了,我们在其中解决了有关超级耦合制度中与规格不变性有关的基本问题的最新辩论。

This article reviews theoretical methods developed in the last decade to understand cavity quantum electrodynamics in the ultrastrong-coupling regime, where the strength of the light-matter interaction becomes comparable to the photon frequency. Along with profound modifications of fundamental quantum optical effects giving rise to a rich phenomenology, this regime introduces significant theoretical challenges. One of the most important is the break-down of the rotating-wave approximation which neglects all non-resonant terms in light-matter interaction Hamiltonians. Consequently, a large part of the quantum optical theoretical framework has to be revisited in order to accurately account for all interaction terms in this regime. We give in this article a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper derivations of master equations and computation of photodetection signals. For each aspect of the theory, the basic principles of the methods are illustrated on paradigmatic models such as quantum Rabi and spin-boson models. In this spirit, most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached, such as semiconductor microcavities and superconducting circuits. The validity of these models is discussed in the last part of the article, where we address recent debates on fundamental issues related to gauge invariance in the ultrastrong-coupling regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源