论文标题
伪巴尔索蒂表征的潜在对角线性
Potential diagonalisability of pseudo-Barsotti-Tate representations
论文作者
论文摘要
Kisin和Gee的先前工作证明了有限扩展名的Galois组的两维barsotti表示的潜在对角线性性。在本文中,我们通过将Barsotti-Tate条件放松到我们称为伪-barsotti-tate的基础上(这意味着对于某些嵌入式$κ:k \ rightArrow \ edrow \ edrow \ overline {\ mathbb {q}}} _ p $,我们允许$κ$ -HODGE-tate with $ [0 $ [0 $ [0 $ [0,$] $ [0,P]
Previous work of Kisin and Gee proves potential diagonalisability of two dimensional Barsotti-Tate representations of the Galois group of a finite extension $K/\mathbb{Q}_p$. In this paper we build upon their work by relaxing the Barsotti-Tate condition to one we call pseudo-Barsotti-Tate (which means that for certain embeddings $κ:K \rightarrow \overline{\mathbb{Q}}_p$ we allow the $κ$-Hodge-Tate weights to be contained in $[0,p]$ rather than $[0,1]$).