论文标题
锁定免费和梯度强大的H(DIV) - 合并线性弹性的HDG方法
Locking free and gradient robust H(div)-conforming HDG methods for linear elasticity
论文作者
论文摘要
(几乎不可压缩)线性弹性的鲁棒离散方法无体积锁定和梯度反固定。虽然体积锁定是一个众所周知的问题,可以在许多不同的离散化方法中解决,但线性弹性的梯度合作感的概念是新的。我们讨论了这两个方面,并提出了新型混合不连续的Galerkin(HDG)方法,以实现线性弹性。这些方法的起点是差异构成离散化。由于其行为良好的stokes限制了该方法是梯度的且无体积锁定的方法。为了提高计算效率,我们还考虑具有放松的差异符合性和修改的离散化,从而使梯度稳定性重新稳定,从而在HDG SuperConvergence的意义上也产生了强大而准确的离散化。
Robust discretization methods for (nearly-incompressible) linear elasticity are free of volume-locking and gradient-robust. While volume-locking is a well-known problem that can be dealt with in many different discretization approaches, the concept of gradient-robustness for linear elasticity is new. We discuss both aspects and propose novel Hybrid Discontinuous Galerkin (HDG) methods for linear elasticity. The starting point for these methods is a divergence-conforming discretization. As a consequence of its well-behaved Stokes limit the method is gradient-robust and free of volume-locking. To improve computational efficiency, we additionally consider discretizations with relaxed divergence-conformity and a modification which re-enables gradient-robustness, yielding a robust and quasi-optimal discretization also in the sense of HDG superconvergence.