论文标题

使用运动学筛分的Acgan合成雷达微型多普勒特征的运动分类

Motion Classification using Kinematically Sifted ACGAN-Synthesized Radar Micro-Doppler Signatures

论文作者

Erol, Baris, Gurbuz, Sevgi Zubeyde, Amin, Moeness G.

论文摘要

深度神经网络(DNNS)最近在需要分类雷达回报的应用中受到了广泛的关注,包括基于雷达的人类活动的安全,智能家居,辅助生活和生物医学。但是,由于雷达数据收集所需的高昂成本和资源,获得足够大的培训数据集仍然是一项艰巨的任务。在本文中,提出了一种扩展的对抗性学习方法,用于生成适应不同环境的合成雷达微型多普勒特征。使用视觉解释,运动学一致性,数据多样性,潜在空间的维度和显着性图来评估合成数据。引入了基于原理组件分析(PCA)运动算法,以确保合成特征与物理上可能的人体运动一致。合成数据集用于训练19层深卷积神经网络(DCNN),以对从与提供给对抗性网络的数据集不同的环境中获取的微型多普勒签名进行分类。在包含多个方面角度(0度,30度和45度以及60度)的数据集上达到总体精度为93%,由于运动学筛分而提高了9%。

Deep neural networks (DNNs) have recently received vast attention in applications requiring classification of radar returns, including radar-based human activity recognition for security, smart homes, assisted living, and biomedicine. However,acquiring a sufficiently large training dataset remains a daunting task due to the high human costs and resources required for radar data collection. In this paper, an extended approach to adversarial learning is proposed for generation of synthetic radar micro-Doppler signatures that are well-adapted to different environments. The synthetic data is evaluated using visual interpretation, analysis of kinematic consistency, data diversity, dimensions of the latent space, and saliency maps. A principle-component analysis (PCA) based kinematic-sifting algorithm is introduced to ensure that synthetic signatures are consistent with physically possible human motions. The synthetic dataset is used to train a 19-layer deep convolutional neural network (DCNN) to classify micro-Doppler signatures acquired from an environment different from that of the dataset supplied to the adversarial network. An overall accuracy 93% is achieved on a dataset that contains multiple aspect angles (0 deg., 30 deg., and 45 deg. as well as 60 deg.), with 9% improvement as a result of kinematic sifting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源