论文标题

MGD框架中引力脱钩引起的各向异性上的规律性条件

Regularity condition on the anisotropy induced by gravitational decoupling in the framework of MGD

论文作者

Abellán, Gabriel, Torres, Victor, Fuenmayor, Ernesto, Contreras, Ernesto

论文摘要

我们使用重力解耦来建立最小几何变形方法与获得各向异性流体溶液的标准方法之间的联系。由最小几何变形框架中出现的关系的动机,我们给出了一个各向异性因子,使我们能够求解与解耦行业相关的准网络方程。我们通过构建众所周知的Tolman IV解决方案的各向异性扩展来说明这一点,以这种方式提供了代表紧凑对象行为的精确且物理上可接受的解决方案。我们表明,这样,不必使用通常的模仿约束条件。正如预期的那样,我们的解决方案不含物理和几何奇异性。我们在分析和图形上都介绍了解决方案的主要物理特征,并通过研究物理可接受性的常规标准获得了解决方案的生存能力。

We use gravitational decoupling to establish a connection between the minimal geometric deformation approach and the standard method for obtaining anisotropic fluid solutions. Motivated by the relations that appear in the framework of minimal geometric deformation, we give an anisotropy factor that allows us to solve the quasi--Einstein equations associated to the decoupler sector. We illustrate this by building an anisotropic extension of the well known Tolman IV solution, providing in this way an exact and physically acceptable solution that represents the behavior of compact objects. We show that, in this way, it is not necessary to use the usual mimic constraint conditions. Our solution is free from physical and geometrical singularities, as expected. We have presented the main physical characteristics of our solution both analytically and graphically and verified the viability of the solution obtained by studying the usual criteria of physical acceptability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源