论文标题
建立可控的解散网络
Toward a Controllable Disentanglement Network
论文作者
论文摘要
本文解决了学习解开图像表示形式的两个关键问题,即控制图像编辑过程中的分离程度,并平衡分离强度和重建质量。为了鼓励解开,我们设计了基于距离协方差的去相关正则化。此外,对于重建步骤,我们的模型利用软目标表示与潜在图像代码相结合。通过探索软目标表示的实值空间,我们能够将新型图像与指定属性合成。为了提高自动编码器(AE)基于的模型生成的图像的感知质量,我们通过将AE解码器和GAN生成器折叠到一个中,将编码器decoder架构扩展到了一个生成对抗网络(GAN)中。我们还设计了一个基于分类的协议,以定量评估模型的分离强度。实验结果展示了提出的模型的好处。
This paper addresses two crucial problems of learning disentangled image representations, namely controlling the degree of disentanglement during image editing, and balancing the disentanglement strength and the reconstruction quality. To encourage disentanglement, we devise a distance covariance based decorrelation regularization. Further, for the reconstruction step, our model leverages a soft target representation combined with the latent image code. By exploring the real-valued space of the soft target representation, we are able to synthesize novel images with the designated properties. To improve the perceptual quality of images generated by autoencoder (AE)-based models, we extend the encoder-decoder architecture with the generative adversarial network (GAN) by collapsing the AE decoder and the GAN generator into one. We also design a classification based protocol to quantitatively evaluate the disentanglement strength of our model. Experimental results showcase the benefits of the proposed model.