论文标题

在3 $ d $过渡金属/拓扑绝缘子界面时诱导的自旋纹理

Induced Spin-texture at 3$d$ Transition Metal/Topological Insulator Interfaces

论文作者

Laref, Slimane, Ghosh, Sumit, Tsymbal, Evgeny Y., Manchon, Aurelien

论文摘要

虽然拓扑绝缘子的某些最优雅的应用,例如量子异常的大厅效应,需要在存在时间反向对称性破坏的情况下保存狄拉克表面状态,但其他现象(例如自旋荷尔兰转换)却依赖于这些表面状态的能力,可以使这些表面状态在相邻的磁性层上压印其自旋纹理。在这项工作中,我们研究了使用第一原理计算,研究了在Bi $ _ {2} $ _ {2} $ se $ _ {2} $ se $ _ {3} $拓扑绝缘子的顶部,使用第一原理计算,这些单层过渡金属(3 $ d $ -tm)的表面状态的自旋锁定。我们发现3 $ d $ -tm的磁矩与由狄拉克表面状态的旋转摩托锁{\ em诱导}的幅度之间的磁矩之间存在反相关。虽然在3 $ d $系列的上半场(按照Hund的规则)的上半场磁矩很大,但在系列的后半部分,Spin Momentum锁定最大。我们解释了这一趋势是由于原子内磁交换与3 $ d $ -tm覆盖剂与狄拉克表面状态之间的共价键之间的妥协所引起的。结果,虽然CR和MN覆盖仪可以成功地用于观察量子异常霍尔效应或轴突绝缘子的实现,但CO和NI对于旋转荷尔兰转换效应(例如自旋轨道扭矩和电荷泵送。

While some of the most elegant applications of topological insulators, such as quantum anomalous Hall effect, require the preservation of Dirac surface states in the presence of time-reversal symmetry breaking, other phenomena such as spin-charge conversion rather rely on the ability for these surface states to imprint their spin texture on adjacent magnetic layers. In this work, we investigate the spin-momentum locking of the surface states of a wide range of monolayer transition metals (3$d$-TM) deposited on top of Bi$_{2}$Se$_{3}$ topological insulators using first principles calculations. We find an anticorrelation between the magnetic moment of the 3$d$-TM and the magnitude of the spin-momentum locking {\em induced} by the Dirac surface states. While the magnetic moment is large in the first half of the 3$d$ series, following Hund's rule, the spin-momentum locking is maximum in the second half of the series. We explain this trend as arising from a compromise between intra-atomic magnetic exchange and covalent bonding between the 3$d$-TM overlayer and the Dirac surface states. As a result, while Cr and Mn overlayers can be used successfully for the observation of quantum anomalous Hall effect or the realization of axion insulators, Co and Ni are substantially more efficient for spin-charge conversion effects, e.g. spin-orbit torque and charge pumping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源