论文标题
空腔堆积分散光谱
Cavity buildup dispersion spectroscopy
论文作者
论文摘要
超高基因吸收光谱的测量可以帮助验证量子理论,工程师超低化学和远程感知气氛。使用基于频率的色散或基于时间的吸收方法,在腔体增强光谱方面取得的最新成就为精确度设定了新的记录,并在每毫米级的水平下不确定性。但是,激光扫描5或对非线性的敏感性限制了其最终性能。在这里,我们介绍了空腔堆积色谱光谱(CBD),其中腔谐振的分散频移被编码在腔对相位锁定的非谐振激光激发的短暂响应中。在堆积过程中的光频率之间的跳动正好从模式中心定位着引起的呼声,从而实现了单次分散测量。 CBD的精度受选定的频率标准的限制,这是一个受腔往返时间限制的速度,目前与基于强度的方法相比,目前比检测非线性的50倍。 CBD的普遍性表现出有望改善各种光线相互作用的基本研究。
Measurements of ultrahigh-fidelity absorption spectra can help validate quantum theory, engineer ultracold chemistry, and remotely sense atmospheres. Recent achievements in cavity-enhanced spectroscopy using either frequency-based dispersion or time-based absorption approaches have set new records for accuracy with uncertainties at the sub-per-mil level. However, laser scanning5 or susceptibility to nonlinearities limits their ultimate performance. Here we present cavity buildup dispersion spectroscopy (CBDS) in which the dispersive frequency shift of a cavity resonance is encoded in the cavity's transient response to a phase-locked non-resonant laser excitation. Beating between optical frequencies during buildup exactly localizes detuning from mode center, and thus enables single-shot dispersion measurements. CBDS yields an accuracy limited by the chosen frequency standard, a speed limited by the cavity round-trip time, and is currently 50 times less susceptible to detection nonlinearity compared to intensity-based methods. The universality of CBDS shows promise for improving fundamental research into a variety of light-matter interactions.