论文标题

受限制的k色分区,ii

Restricted k-color partitions, II

论文作者

Keith, William J.

论文摘要

我们考虑$(k,j)$ - 彩色分区,其中存在$ k $的颜色,但最多可以选择$ j $颜色。特别是这些概括的过度分区。在先前的工作中,我们找到了新的一致性,包括在以前未开发的案例中,$ k $和$ j $不是企业,以及某些非企业。除此之外,我们为具有给定数量的零件尺寸的$ n \ times m $ box中的分区数量提供了明显的新生成功能,并扩展到多种颜色的dousse和kim的猜想在过度分区中的单段性。

We consider $(k,j)$-colored partitions, partitions in which $k$ colors exist but at most $j$ colors may be chosen per size of part. In particular these generalize overpartitions. Advancing previous work, we find new congruences, including in previously unexplored cases where $k$ and $j$ are not coprime, as well as some noncongruences. As a useful aside, we give the apparently new generating function for the number of partitions in the $N \times M$ box with a given number of part sizes, and extend to multiple colors a conjecture of Dousse and Kim on unimodality in overpartitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源