论文标题
集中现象到更高阶段的liouville方程式
Concentration phenomena to a higher order Liouville equation
论文作者
论文摘要
我们研究了一系列解决方案$(u_k)$的爆炸和量化现象\int_Ωe^{2nu_k} dx \ leq c,$$在$ q_k $上的自然假设下。众所周知,直到一个子序列,要么$(u_k)$具有适当的规范,要么存在$β_k\ to \ infty $,以至于$ u_k =β_k(φ+o(1)$ in $ω\ setMinus in $ setminus(s_1 \ cups_φs_φ)$ nontrivial $ nontrivial nontrivial nontrivial nontrivial and $ nontrivim nontrivim nontrivim notivem- $ s_1 $,其中$ sφ$是$φ$的零集。我们证明了总曲率$ \ int _ {\tildeΩ} q_ke^{2nu_k} dx $上$ \tildeΩ\ subset(ω\ setMinuss_φ)$上的q_ke^{2nu_k} dx $的量化。我们还考虑了第三维中的非本地情况。
We study blow-up and quantization phenomena for a sequence of solutions $(u_k)$ to the prescribed $Q$-curvature problem $$ (-Δ)^nu_k= Q_ke^{2nu_k}\quad \text{in }Ω\subset\mathbb{R}^{2n},\quad \int_Ωe^{2nu_k}dx\leq C,$$ under natural assumptions on $Q_k$. It is well-known that, up to a subsequence, either $(u_k)$ is bounded in a suitable norm, or there exists $β_k\to\infty$ such that $ u_k=β_k(φ+o(1))$ in $Ω\setminus (S_1\cup S_φ)$ for some non-trivial non-positive $n$-harmonic function $φ$ and for a finite set $S_1$, where $S_φ$ is the zero set of $φ$. We prove quantization of the total curvature $\int_{\tildeΩ}Q_ke^{2nu_k}dx$ on the region $\tildeΩ\Subset(Ω\setminus S_φ)$. We also consider a non-local case in dimension three.