论文标题

非亚伯群体作用的逆频谱结果

Inverse spectral results for non-abelian group actions

论文作者

Guillemin, Victor, Wang, Zuoqin

论文摘要

在本文中,我们将扩展到非亚伯群体逆频谱结果,我们在较早的论文中证明了紧凑的阿贝尔群体,即tori。更准确地说,让$ \ mathsf g $是一个紧凑的谎言组,在紧凑的riemannian歧管上iSometimemortion conterains $ x $。我们将证明,对于Schrödingeroperator $ - \ hbar^2δ+v $,$ v \ in c^\ infty(x)^{\ Mathsf g} $,在一些有趣的示例中,潜在函数$ v $由$ \ m m i \ m m i \ m g $ equivariant spectrum确定。此证明中的关键成分是Lagrangian歧管$ \ MATHRM {graph}(dv)$和$ \ mathrm {graph}(df)$之间的广义Legendrian关系,其中$ f $是在阳性Weyl Chamber的开放子集中定义的光谱不变。

In this paper we will extend to non-abelian groups inverse spectral results, proved by us in an earlier paper, for compact abelian groups, i.e. tori. More precisely, Let $\mathsf G$ be a compact Lie group acting isometrically on a compact Riemannian manifold $X$. We will show that for the Schrödinger operator $-\hbar^2 Δ+V$ with $V \in C^\infty(X)^{\mathsf G}$, the potential function $V$ is, in some interesting examples, determined by the $\mathsf G$-equivariant spectrum. The key ingredient in this proof is a generalized Legendrian relation between the Lagrangian manifolds $\mathrm{Graph}(dV)$ and $\mathrm{Graph}(dF)$, where $F$ is a spectral invariant defined on an open subset of the positive Weyl chamber.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源