论文标题
关于某些傅立叶脉络符中的可逆元素的结构
On the structure of invertible elements in certain Fourier-Stieltjes algebras
论文作者
论文摘要
对于本地紧凑的Abelian Group $ G $,J。L. Taylor(1971)对措施代数$ m(g)$的可逆元素进行了完整的表征。使用傅立叶 - 斯泰尔杰斯变换,可以在傅立叶式代数$ b(g)$的背景下进行此特征。我们为某些类别的本地紧凑型组的傅立叶代数$ b(g)$获得后一种特征,尤其是许多完全最小的组和$ ax+b $ group。
For a locally compact abelian group $G$, J. L. Taylor (1971) gave a complete characterization of invertible elements in the measure algebra $M(G)$. Using the Fourier-Stieltjes transform, this characterization can be carried out in the context of Fourier-Stieltjes algebras $B(G)$. We obtain this latter characterization for the Fourier-Stieltjes algebra $B(G)$ of certain classes of locally compact groups, in particular, many totally minimal groups and the $ax+b$-group.