论文标题

使用数据划分

Energy-Efficient Offloading in Delay-Constrained Massive MIMO Enabled Edge Network Using Data Partitioning

论文作者

Malik, Rafia, Vu, Mai

论文摘要

我们研究了一个无线边缘计算系统,该系统允许多个用户同时将计算密集型任务卸载到多个大型MIMO访问点,每个任务都带有相互访问的多访问Edge Computing(MEC)服务器。 Massive Mimo启用了所有用户的同时上行链路传输,与顺序协议相比,大大缩短了数据卸载时间,并使数据卸载,计算和下载的三个阶段具有可比的持续时间。基于这种三相结构,我们制定了一个新的问题,以最大程度地减少用户和MEC服务器在往返潜伏期约束下的加权总和,并使用数据分配,传输功率控制和CPU频率缩放在用户和服务器端的组合。我们使用两种不同的方法设计了一种新颖的嵌套原始二元算法来有效地解决此问题。优化的解决方案表明,对于较大的请求,尽管无线传输的能源成本更高,但仍将更多数据卸载到MEC中,以减少本地计算时间以满足潜伏期约束。试点污染下的大规模MIMO通道估计错误也导致更多数据被卸载到MEC中。与二进制卸载相比,与数据分配的部分卸载相比是优越的,并且会大大减少整体能源消耗。

We study a wireless edge-computing system which allows multiple users to simultaneously offload computation-intensive tasks to multiple massive-MIMO access points, each with a collocated multi-access edge computing (MEC) server. Massive-MIMO enables simultaneous uplink transmissions from all users, significantly shortening the data offloading time compared to sequential protocols, and makes the three phases of data offloading, computing, and downloading have comparable durations. Based on this three-phase structure, we formulate a novel problem to minimize a weighted sum of the energy consumption at both the users and the MEC server under a round-trip latency constraint, using a combination of data partitioning, transmit power control and CPU frequency scaling at both the user and server ends. We design a novel nested primal-dual algorithm using two different methods to solve this problem efficiently. Optimized solutions show that for larger requests, more data is offloaded to the MECs to reduce local computation time in order to meet the latency constraint, despite higher energy cost of wireless transmissions. Massive-MIMO channel estimation errors under pilot contamination also causes more data to be offloaded to the MECs. Compared to binary offloading, partial offloading with data partitioning is superior and leads to significant reduction in the overall energy consumption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源