论文标题

通过深层神经网络转移学习的自动幻影测试模式分类

Automatic phantom test pattern classification through transfer learning with deep neural networks

论文作者

Fricks, Rafael B., Solomon, Justin, Samei, Ehsan

论文摘要

成像幻影是用于测量计算机断层扫描(CT)系统中图像质量的测试模式。一个新的Phantom平台(Mercury Phantom,Gammex)提供了用于估计任务传输功能(TTF)或噪声功率谱(NPF)的测试模式,并模拟不同的患者尺寸。确定当前适合分析的图像切片需要专家对这些模式进行手动注释,因为细微的缺陷可能使图像不适合测量。我们提出了一种使用深度学习技术在一系列幻影图像中自动对这些测试模式进行分类的方法。通过基于VGG19体系结构的卷积神经网络调整具有在Imagenet上训练的权重的卷积神经网络,我们使用转移学习来生成该域的分类器。分类器经过培训和评估,并在大学医学中心获得了3500多个幻影图像。彩色图像的输入通道已成功调整以传达幻影图像的上下文信息。采用一系列消融研究来验证分类器的设计方面,并在不同的训练条件下评估其性能。我们的解决方案广泛使用图像增强,以产生分类器,该分类器以98%的精度准确地对典型的幻影图像进行分类,同时在不正确成像时保持高达86%的精度。

Imaging phantoms are test patterns used to measure image quality in computer tomography (CT) systems. A new phantom platform (Mercury Phantom, Gammex) provides test patterns for estimating the task transfer function (TTF) or noise power spectrum (NPF) and simulates different patient sizes. Determining which image slices are suitable for analysis currently requires manual annotation of these patterns by an expert, as subtle defects may make an image unsuitable for measurement. We propose a method of automatically classifying these test patterns in a series of phantom images using deep learning techniques. By adapting a convolutional neural network based on the VGG19 architecture with weights trained on ImageNet, we use transfer learning to produce a classifier for this domain. The classifier is trained and evaluated with over 3,500 phantom images acquired at a university medical center. Input channels for color images are successfully adapted to convey contextual information for phantom images. A series of ablation studies are employed to verify design aspects of the classifier and evaluate its performance under varying training conditions. Our solution makes extensive use of image augmentation to produce a classifier that accurately classifies typical phantom images with 98% accuracy, while maintaining as much as 86% accuracy when the phantom is improperly imaged.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源