论文标题
可允许的顶峰订购
Admissible pinnacle orderings
论文作者
论文摘要
置换的顶峰是用单行符号编写时的值大于其直接邻居的值。在本文中,我们基于以前的作品,这些作品是可允许的顶峰集合集合的特征。对于这些集合,可以有不可允许的尖峰的特定顺序,这意味着它们没有被任何排列所实现。在这里,我们使用Pinnacle X及其在Pinnacle设置中的等级之间的关系来表征可允许的订单,以结合小于或等于x的峰值的次数,可以被较大的值中断。
A pinnacle of a permutation is a value that is larger than its immediate neighbors when written in one-line notation. In this paper, we build on previous work that characterized admissible pinnacle sets of permutations. For these sets, there can be specific orderings of the pinnacles that are not admissible, meaning that they are not realized by any permutation. Here we characterize admissible orderings, using the relationship between a pinnacle x and its rank in the pinnacle set to bound the number of times that the pinnacles less than or equal to x can be interrupted by larger values.