论文标题
Banach代数的不及格特性有价值连续功能
Amenability properties of Banach algebra valued continuous functions
论文作者
论文摘要
令$ x $成为紧凑的豪斯多夫空间,而$ a $ a banach代数。我们调查了所有$ a $ a $ a $ a $ a $ a $ a $ a $ c(x,a)$的修理性属性。我们表明,$ c(x,a)$具有有限的近似对角线,并且只有$ a $具有有限的近似对角线;如果$ a $具有紧凑的中央近似对角线(无限),则$ c(x,a)$具有紧凑的近似对角线。还考虑了$ c(x,a)$的弱舒适性。
Let $X$ be a compact Hausdorff space and $A$ a Banach algebra. We investigate amenability properties of the algebra $C(X,A)$ of all $A$-valued continuous functions. We show that $C(X,A)$ has a bounded approximate diagonal if and only if $A$ has a bounded approximate diagonal; if $A$ has a compactly central approximate diagonal (unbounded) then $C(X,A)$ has a compactly approximate diagonal. Weak amenability of $C(X,A)$ for commutative $A$ is also considered.