论文标题

研究$σ$,$ f_ {0}(980)$的分子性质和$ a_ {0}(980)$状态

Study the molecular nature of $σ$, $f_{0}(980)$, and $a_{0}(980)$ states

论文作者

Ahmed, Hiwa A., Xiao, C. W.

论文摘要

我们使用手性统一方法的形式主义研究了$σ$,$ f_ {0}(980)$的特性。随着它们的动态产生,我们通过评估耦合,综合性,波函数和半径来进一步研究其性质。我们还研究了它们在单个通道交互中的属性,其中$ a_ {0}(980)$无法在$ k \ bar {k} $互动中与isospin $ i = 1 $复制,因为电位太弱了。在我们的结果中,$σ$和$ f_ {0}(980)$的状态可以动态复制,并且在耦合通道和单个通道案例中的截止情况都不同。我们发现,$πη$组件在耦合的通道交互中非常重要,以动态重现$ a_ {0}(980)$状态,这意味着$ a_ {0}(980)$状态不能成为纯$ k \ bar {k \ bar {k {k} $ molecular state。我们将它们的半径作为:$ | \ langle r^2 \ rangle | _ {f_0(980)} = 1.80 \ pm 0.35 $ fm,$ | \ langle r^2 \ rangle |_σ= 0.68 \ pm 0.05 \ pm 0.05 $ fm fm and $ |。 0.94 \ pm 0.09 $ fm。根据我们的调查结果,我们得出结论,$ f_ {0}(980)$状态主要是$ k \ bar {k} $绑定状态,$σ$状态a $ππ$的共振和$ a_ {0}(980)(980)$状态$ k \ b bar \ bar {k {k} $ bound and bound。从综合性的结果来看,它们不是纯分子状态,并且具有非分子成分,尤其是对于$σ$状态。

We investigate the characteristics of $σ$, $f_{0}(980)$, and $a_{0}(980)$ with the formalism of chiral unitary approach. With the dynamical generation of them, we make a further study of their properties by evaluating the couplings, the compositeness, the wave functions and the radii. We also research their properties in the single channel interactions, where the $a_{0}(980)$ can not be reproduced in the $K\bar{K}$ interactions with isospin $I=1$ since the potential is too weak. In our results, the states of $σ$ and $f_{0}(980)$ can be dynamically reproduced stably with varying cutoffs both in the coupled channel and the single channel cases. We find that the $πη$ components is much important in the coupled channel interactions to dynamically reproduce the $a_{0}(980)$ state, which means that $a_{0}(980)$ state can not be a pure $K\bar{K}$ molecular state. We obtain their radii as: $|\langle r^2 \rangle|_{f_0(980)} = 1.80 \pm 0.35$ fm, $|\langle r^2 \rangle|_σ = 0.68 \pm 0.05$ fm and $|\langle r^2 \rangle|_{a_0(980)} = 0.94 \pm 0.09$ fm. Based on our investigation results, we conclude that the $f_{0}(980)$ state is mainly a $K\bar{K}$ bound state, the $σ$ state a resonance of $ππ$ and the $a_{0}(980)$ state a loose $K\bar{K}$ bound state. From the results of the compositeness, they are not pure molecular states and have something non-molecular components, especially for the $σ$ state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源