论文标题

高导体中希格斯模式的当前辅助拉曼激活

Current-assisted Raman activation of the Higgs mode in superconductors

论文作者

Puviani, Matteo, Schwarz, Lukas, Zhang, Xiao-Xiao, Kaiser, Stefan, Manske, Dirk

论文摘要

超导体中的希格斯模式是无电或磁偶极矩的标量模式。因此,通常认为它的激发仅限于非线性的两光子拉曼过程。但是,最近的努力表明,在存在超电流的情况下,线性激发是可能的,从而在$ω=2δ$下进行了新的共振剂增强,而驱动光频率$ω$以及higgs模式$2Δ$的能量。这与在非线性第三谐波生成实验中发现的通常$2Ω=2δ$共振条件相反。在此通信中,我们表明这种线性激发仍然可以描述为有效的拉曼两光子过程,一个光子为$ω=2δ$,一个虚拟光子在$ω= 0 $中,代表DC SuperCurrent。同时,我们证明具有单个光子激发的直接红外激活可以忽略不计。此外,我们为我们的理论提供了一个一般的背景,为如何在传统的差异产生或总和频率生成过程中分别理解HIGGS模式的激发如何提供了解释。在这样的图片中,观察到的新共振条件$ω=2δ$只是一种特殊情况。采用相同的方法,我们进一步讨论了另一个最近的实验,在存在直流超电流的情况下,我们发现了对奇数更高谐波的抑制。

The Higgs mode in superconductors is a scalar mode without electric or magnetic dipole moment. Thus, it is commonly believed that its excitation is restricted to a nonlinear two-photon Raman process. However, recent efforts have shown that a linear excitation in the presence of a supercurrent is possible, resulting in a new resonant enhancement at $Ω=2Δ$ with the driving light frequency $Ω$ and the energy of the Higgs mode $2Δ$. This is in contrast to the usual $2Ω= 2Δ$ resonance condition found in nonlinear third-harmonic generation experiments. In this communication, we show that such a linear excitation can still be described as an effective Raman two-photon process, with one photon at $ω=2Δ$ and one virtual photon at $ω=0$ which represents the dc supercurrent. At the same time we demonstrate that a straightforward infrared activation with a single photon excitation is negligible. Moreover, we give a general context to our theory, providing an explanation for how the excitation of the Higgs mode in both THz quench and drive experiments can be understood within a conventional difference-frequency generation or sum-frequency generation process, respectively. In such a picture, the observed new resonance condition $Ω= 2Δ$ is just a special case. With the same approach, we further discuss another recent experiment, where we find a suppression of odd order higher harmonics in the presence of a dc supercurrent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源