论文标题

分层的交叉验证,用于公正和隐私的联合学习

Stratified cross-validation for unbiased and privacy-preserving federated learning

论文作者

Bey, R., Goussault, R., Benchoufi, M., Porcher, R.

论文摘要

电子记录的大规模收集既是开发更准确的预测模型的机会,又是对隐私的威胁。为了限制隐私曝光,新的增强隐私技术正在出现,例如联合学习,可以实现大规模的数据分析,同时避免在独特的数据库中集中记录,这将代表一个关键的失败点。尽管对隐私保护有希望,但联邦学习可以阻止使用一些数据清洁算法,从而引起新的偏见。在这项工作中,我们着重于重复记录的复发问题,即如果无法正确处理,可能会对模型的性能产生过度欣赏的估计。我们介绍和讨论分层的交叉验证,这是一种验证方法,利用分层技术来防止联合学习设置中的数据泄漏,而无需依赖要求重复数据删除算法。

Large-scale collections of electronic records constitute both an opportunity for the development of more accurate prediction models and a threat for privacy. To limit privacy exposure new privacy-enhancing techniques are emerging such as federated learning which enables large-scale data analysis while avoiding the centralization of records in a unique database that would represent a critical point of failure. Although promising regarding privacy protection, federated learning prevents using some data-cleaning algorithms thus inducing new biases. In this work we focus on the recurrent problem of duplicated records that, if not handled properly, may cause over-optimistic estimations of a model's performances. We introduce and discuss stratified cross-validation, a validation methodology that leverages stratification techniques to prevent data leakage in federated learning settings without relying on demanding deduplication algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源