论文标题

riemann的光脉冲问题,用于通用的chen-lee-liu方程

Riemann problem for the light pulses in optical fibers for the generalized Chen-Lee-Liu equation

论文作者

Ivanov, Sergey K.

论文摘要

我们提供了可能的波结构的分类,这些波结构是从正常分散纤维中传播的光子流体最初不连续的曲线演变而来的。光场的动力学用广义的陈列 - 李 - liu方程描述,该方程属于非线性schrödinger方程的家族,由于纤维材料响应对电磁信号变化的效果的延迟而出现了自固定类型项。该方程还用于研究通过单个非线性传输网络传播的调制波的动力学。我们描述其周期性解决方案和相应的WHITHAM调制方程。初始参数轮廓生成的波模式由详细介绍的不同构件组成。结果表明,在这种情况下,进化动力学比非线性schrödinger方程要丰富得多。在不连续性下所有可能的跳跃条件给出了可能的波结构的完整分类。我们的分析结果通过数值模拟证实。

We provide the classification of possible wave structures evolving from initially discontinuous profiles for the photon fluid propagating in a normal dispersion fiber. The dynamics of light field is described by the generalized Chen-Lee-Liu equation, which belongs to the family of the nonlinear Schrödinger equations with a self-steepening type term appearing due to retardation of the fiber material response to variations of the electromagnetic signal. This equation is also used in investigations of the dynamics of modulated waves propagating through a single nonlinear transmission network. We describe its periodic solutions and the corresponding Whitham modulation equations. The wave patterns generated by the initial parameter profiles are composed of different building blocks which are presented in detail. It is shown that evolution dynamics in this case is much richer than that for the nonlinear Schrödinger equation. Complete classification of possible wave structures is given for all possible jump conditions at the discontinuity. Our analytic results are confirmed by numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源