论文标题

空间中随机点的chirotopes在小整数网格上可以实现

Chirotopes of Random Points in Space are Realizable on a Small Integer Grid

论文作者

Cardinal, Jean, Fabila-Monroy, Ruy, Hidalgo-Toscano, Carlos

论文摘要

我们证明,有了很高的概率,可以将$ n $点的均匀样本在$ \ mathbb {r}^d $中的凸形域中的均匀样本舍入到点上的圆形,该网格的步骤大小与$ 1/n^{d+1+1+ε} $成比例的网格,而无需更改基础chirotope(方向的仿真)。因此,可以用$ O(n \ log n)$位编码随机点集的chirotopes。这与最坏的情况形成了鲜明的对比,在这种情况下,即使对于$ d = 2 $,网格可能被迫具有$ 1/2^{2^{ω(n)}} $的步长$ 1/2^{2^{ω(n)}} $。 该结果是由于Fabila-Monroy和Huemer(2017)和Devillers,Duchon,Glisse和Goaoc(2018),对先前的结果进行了对先前结果的高度概括。

We prove that with high probability, a uniform sample of $n$ points in a convex domain in $\mathbb{R}^d$ can be rounded to points on a grid of step size proportional to $1/n^{d+1+ε}$ without changing the underlying chirotope (oriented matroid). Therefore, chirotopes of random point sets can be encoded with $O(n\log n)$ bits. This is in stark contrast to the worst case, where the grid may be forced to have step size $1/2^{2^{Ω(n)}}$ even for $d=2$. This result is a high-dimensional generalization of previous results on order types of random planar point sets due to Fabila-Monroy and Huemer (2017) and Devillers, Duchon, Glisse, and Goaoc (2018).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源